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1. 

The analysis of viscously damped structures is becoming increasingly important
in the fields of smart structures and rotating machinery. In smart structures passive
and active damping are used to reduce the vibration response of the structure to
disturbances. Journal bearings in rotating machinery add significant damping to
the system. Usually this damping is non-classical, in the sense that the modes are
complex. Caughey and O’Kelly [1] gave the conditions on the mass, damping and
stiffness matrices for the modes to be classical (or real). A number of authors have
given an overview of complex modes [2–6]. Other interesting work has concerned
calculating bounds on the damped response [7], the derivation of conditions to
determine whether the response is over, under or critically damped [8], and the
estimation of the errors involved in neglecting the coupling between the undamped
modes through the damping matrix [9, 10].

This letter is concerned with the resonance frequencies of viscously damped
structures, defined as the frequency at which the response attains a local maximum.
For a single-degree-of-freedom system with viscous damping it is well known that
this resonance frequency is neither the undamped nor the damped natural
frequency. For multi-degree-of-freedom systems the resonance frequency can
change depending on which degree of freedom is considered. This occurs for well
separated complex modes and also for systems with real modes, due to the influence
of neighbouring modes. In rotating structures these frequencies are termed the
critical speeds, and one standard definition of a critical speed is based on the
frequency at which the response attains a local maximum [11]. Unfortunately, as
demonstrated here, this definition of the critical speeds of a machine leads to
different critical speeds depending on which degree of freedom is considered.

2.    ---  

The standard equations of motion in structural dynamics in second order form
are

Mẍ+Dẋ+Kx= f (1)

where the response is x, the force is f, and the mass, damping and stiffness matrices
are M, D and K. The eigenvalues, li , and corresponding eigenvectors, fi , are given
by

[l2
i M+ liD+K]fi =0. (2)

0022–460X/98/450950+10 $30.00/0 7 1998 Academic Press



    951

Since the structural matrices are symmetric, the left and right eigenvectors are
equal. Also the eigenvalues and eigenvectors must occur in complex conjugate
pairs, because the structural matrices are real. The direct solution of equation (2),
for the general damping case, is very difficult, and the equations of motion are
conveniently rewritten in the state space form as,

d
dt 6xẋ7=$ 0

−M−1K
I

−M−1D%6xẋ7+6 0
M−1f7=[A]6xẋ7+6 0

M−1f7 (3)

where A is the state space matrix. Transformations may be introduced to generate
different formulations of the state space equations (in particular a symmetric state
space matrix) but this is not required for the development in this paper. The
eigenvalues, li , and the associated right eigenvectors, CRi , of A are related by

ACRi = liCRi . (4)

Notice that the eigenvalues are the same as those from the second order form, and
that from the definition of the state space matrix

CRi =6 fi

lifi7. (5)

Similarly the left eigenvectors, CLi , are obtained from

CT
LiA= liC

T
Li or ATCLi = liCLi . (6)

Although relating the left eigenvectors of the state space matrix to the eigenvectors
of the second order form is more difficult than for the right eigenvectors, from
equation (6) and the definition of A,

CLi =6−(1/li )Kfi

Mfi 7. (7)

The eigenvalues and eigenvectors of A must occur in complex conjugate pairs,
because A is real. Thus far no normalisation of the eigenvectors has been enforced.
The eigenvectors may be multiplied by any complex scalar, and the result is also
an eigenvector. A convenient scaling for the development of the forced response
is

CT
LiCRi =1. (8)

With the definitions of equations (5) and (7) this forces the following normalisation
on the eigenvectors of the second order form,

fT
i [liM−(1/li )K]fi =fT

i [2liM+D]fi =1. (9)
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The definition of the left eigenvectors, equation (7), and the normalisation,
equation (8), agree with those of Lancaster [2]. The eigenvectors are also
orthogonal, in the sense that,

CT
LiCRl =0 and CT

LiACRl =0 if i$ l. (10)

The normalisation in equation (8) also implies that

CT
LiACRi = li . (11)

3.     --- 

The response of the single degree of freedom system

mx..+ dẋ+ kx= f. (12)

may be written in the frequency domain (for zero initial conditions) as

X(v)= [(1/m)/(−v2 +2jzvnv+v2
n )]F(v), (13)

where z and vn are the natural frequency and damping ratio, and X and F are the
Fourier transforms of the response and the force. The maximum amplitude of the
response to a white noise force input, occurs at a frequency

vmax =vnz1−2z2. (14)

Interestingly, this frequency is not the damped natural frequency of the system,
nor is it the natural frequency.

4.    --- 

It is now required to determine the maximum amplitude response for a
multi-degree-of-freedom system. The approach will be to obtain the receptance
matrix as a sum of contributions from each mode. Then near a maximum response
it will be assumed that a single mode dominates, and determines the frequency at
which the response is maximum. The receptance matrix is obtained by
transforming to modal co-ordinates, p, using the modal matrix, thus,

6xẋ7=[CR1 CR2 · · · CR2n ]p=[CR ]p. (15)

Substituting into the state space equations (3), pre-multiplying by the transpose
of the matrix of left eigenvectors [CL ]= [CL1 CL2 · · · CL2n ], and using the
orthogonality and normalisation conditions, equations (8), (10) and (11),

ṗ=[L]p+CT
L6 0

M−1f7 (16)
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where [L]=diag [l1, l2, . . . l2n ]. In the frequency domain,

P(v)= [jvI−L]−1CT
L6 0

M−1F(v)7. (17)

Transforming back to physical co-ordinates and using the definitions of the state
space modal matrices, equations (5) and (7),

X(v)=F[jvI−L]−1FTF(v) (18)

where F=[f1, f2, . . . , f2n ] is the (n, 2n) modal matrix of the second order form.
Equation (18) may be conveniently written as the summation [2]

X(v)=$s
2n

i=1

fif
T
i

jv− li%F(v). (19)

Assuming the first n eigenvalues have positive imaginary part, and the second n
are the corresponding complex conjugates, then

X(v)= s
n

i=1 $ fif
T
i

jv− li
+

f� if�T
i

jv− l�i%F(v), (20)

where the overbar denotes the complex conjugate. Combining the complex
conjugate terms gives

X(v)= s
n

i=1 $ Gi jv+Hi

−v2 +2zivi jv+v2
i%F(v), (21)

where vi and zi are the ith natural frequency and damping ratio, and the definition
of the eigenvalues in terms of the natural frequency and damping ratio,
li =−zivi +jviz1− z2

i , has been used. The numerator terms are

Gi =2 Re [fif
T
i ] and Hi =−2 Re [l�ifif

T
i ]. (22)

Note that for real modes Gi is not automatically zero, because of the scaling of
the modes, equation (9). For a particular frequency response function, near to the
ith natural frequency, the magnitude is maximum when

a(v)= b gi jv+ hi

−v2 +2zivi jv+v2
i b

2

=
g2

i v
2 + h2

i

(v2
i −v2)2 +4z2

i v
2
i v

2 (23)

is maximum. The scalars gi and hi are the relevant elements of Gi and Hi . The
maximum of a is computed by taking the derivative of equation (23) with respect
to v2 and setting the result to zero. The optimum frequency, v, is then the solution
of

g2
i v

4 +2h2
i v

2 − (2h2
i v

2
max + g2

i v
4
i )=0. (24)
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Figure 1. The four degree of freedom discrete example.

where vmax is given by equation (14). The solution for the single-degree-of-freedom
case, vmax , is recovered if gi =0. Also note that there is only one positive solution
of this quadratic equation in v2, equation (24), and thus only one real, positive
solution for the frequency at which the response is a maximum, for each
receptance. Note, however, that because the values of gi and hi change depending
the force and response degrees of freedom considered, the frequency at which the
response is maximum also changes. Thus even with a single complex mode
approximation the resonance frequency changes with the measurement and
forcing location.

Residuals from neighbouring modes may be incorporated into the receptance,
instead of the single mode assumption of equation (23). For the higher modes this
residual is almost constant and for the (i+1)th mode the equivalent to equation
(23) is

a(v)= =(gi jv+ hi )/(−v2 +2zivi jv+v2
i )+ hi+1/v2

i+1=2. (25)

Maximising this receptance produces an equation equivalent to equation (24), but
where

g2
i :g2

i −2hihi+1/v2
i+1 +4gihi+1zivi /v2

i+1 (26)

and

h2
i :h2

i +2hihi+1v
2
i /v2

i+1. (27)

5.  

For proportional damping, that is when the modes of the second order system
are real, then Gi = 0, and the maxima of the receptance amplitudes occur at the
same point for all frequency response functions. This frequency may be computed

T 1

Natural frequencies for the discrete example

Natural Frequency at
frequency Damping Damped natural maximum for SDOF

Mode (rad/s) ratio (%) frequency (rad/s) system (rad/s)

1 0·6407 23·2 0·6233 0·6053
2 1·1404 11·3 1·1332 1·1259
3 1·6734 23·8 1·6252 1·5755
4 1·8287 17·7 1·7997 1·7703
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using the single modal approximation, and is the equivalent to equation (14).
Although the mode is real, that is the relationship between the degrees of freedom
is real, the mode will be multiplied by a complex constant because of the
normalisation imposed on the fi by equation (9). Let hi be the real, mass
normalised mode shape. Then the normalised complex mode shape is

fi = bihi (28)

for some complex scalar bi . The normalisation constant is obtained from equation
(9), since

fT
i $liM−

1
li

K%fi = b2
i h

T
i $liM−

1
li

K%hi = b2
i 0li −

v2
i

li 1=1. (29)

Then, from the definition of Gi , equation (21),

Gi =2[hih
T
i ] Re (b2

i )=2[hih
T
i ] Re 0 li

l2
i −v2

i1. (30)

But,

Re (li /(l2
i −v2

i ))

=Re [(−zivi +jviz1− z2
i )/(−2v2

i (1− z2
i )−2jziv

2
i z1− z2

i )]

=Re [(−zivi +jviz1− z2
i )((1− z2

i )− jziz1− z2
i )/−2v2

i (1− z2
i )]=0 (31)

Thus for systems with real eigenvectors of the second order form, the maximum
response based on a single mode approximation occurs at the same frequency for
all degrees of freedom. For closely spaced modes, or systems with high damping,
this single mode assumption is invalid, and even with real modes the frequency

T 3

Frequencies for maximum response amplitude for the first mode

Single mode Single mode with Single mode/single
Forced Response Full order assumption residual from DoF assumption
DoF DoF model (rad/s) (rad/s) mode 2 (rad/s) (rad/s)

1 1 0·6099 0·6163 0·5933 0·6053
1 2 0·6164 0·6103 0·5973 0·6053
1 3 0·6421 0·6069 0·6285 0·6053
1 4 0·6632 0·6060 0·6571 0·6053
2 2 0·5972 0·6063 0·6001 0·6053
2 3 0·6216 0·6053 0·6155 0·6053
2 4 0·6384 0·6057 0·6277 0·6053
3 3 0·5842 0·6071 0·6015 0·6053
3 4 0·5995 0·6088 0·5893 0·6053
4 4 0·5320 0·6110 0·5578 0·6053
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Figure 2. The receptance magnitude for the four-degree-of-freedom discrete example.

at which the response is maximum can change with the position of the
measurement.

6.   

Consider the four-degree-of-freedom example shown in Figure 1, with m=1 kg,
c=0·5 Ns/m and k=1 N/m. There are 16 frequency response functions
associated with this model, although by reciprocity six of them are repeated.
Table 1 shows the natural frequencies, damping ratios and the damped natural
frequencies. Also shown are the frequency at which the response would be
maximum if each mode was considered as a single-degree-of-freedom system (i.e.,
the frequencies given by equation (14)). Table 2 shows the values of gi and hi .

T 4

Frequencies for maximum response amplitude for the second mode

Single mode Single mode/single
Forced Response Full order model assumption DoF assumption
DoF DoF (rad/s) (rad/s) (rad/s)

1 1 1·1107 1·1283 1·1259
1 2 1·1399 1·1304 1·1259
1 3 1·0812 1·1276 1·1259
1 4 1·1175 1·1259 1·1259
2 2 1·1033 1·1329 1·1259
2 3 – 1·1265 1·1259
2 4 1·0744 1·1264 1·1259
3 3 1·1871 1·1368 1·1259
3 4 1·2228 1·1318 1·1259
4 4 1·1302 1·1275 1·1259
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Tables 3 and 4 show the frequency of maximum amplitude for the 10
independent frequency response curves, obtained numerically from the
four-degree-of-freedom equations of motion. Clearly the maximum response
occurs at significantly different frequencies. Figure 2 shows the absolute frequency
response functions for all 10 independent responses, for a frequency range
covering the first two modes. Tables 3 and 4 also show the frequencies of
maximum response obtained by solving equation (24), based on a single mode
assumption. Although these estimated frequencies for maximum response change
for different responses, clearly the estimates are very inaccurate. The problem is
that for highly damped systems the single mode assumption is invalid. Table 3 also
shows that even allowing for a constant residual for the second mode (equations
(26) and (27)) doesn’t help very much. The effect of neighbouring modes is higher
than that of the mode complexity. Thus, in general, the accurate determination
of frequencies of maximum response for highly damped systems must be obtained
by numerical optimisation.

7. 

It is well known that the resonance frequencies of a multi degree of freedom
viscously damped structure change with the measurement (and forcing) location.
This phenomena has been investigated using the complex mode expansion of the
structure’s receptance matrix. A single mode approximation to a real mode
of a system does have the same resonance frequency at all degrees of freedom.
However, the resonance frequencies of a single mode approximation to
a complex mode of a system are different at different degrees of freedom. For
multi-degree-of-freedom systems the resonance frequencies change with the
measurement location, even for systems with real modes, because of the interaction
between modes.
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